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Abstract. Knowledge about the users’ satisfaction with a dialog is valuable 
when it comes to evaluation, or when the dialog strategy can be adapted. 
Predictions of user satisfaction have been made on the basis of interaction 
parameters for entire dialogs with moderate results. We try to enhance such 
models by including audio features describing the user utterance recording. As 
users were asked for a judgment after each turn, we make predictions on a turn-
by-turn basis. We show that predictions of judgments on the basis of audio 
features are more accurate than the baseline. 

Introduction 

With increasing complexity of interactive systems available to customers, the 
assessment of quality becomes increasingly important. According to Jekosch ([1]), 
quality is a perceptual construct and thus subjective, which means that its 
measurement must involve human judges. It is common practice to invite users to 
interact with a system and have them fill out a questionnaire covering several quality 
aspects ([2], [3]). However, it is not always possible to ask the user for a judgment, 
e.g. when the user is in the middle of a dialog, or if it is inappropriate to molest the 
user with questions irrelevant to the actual task. 

Therefore, methods were developed which allow automatic predictions of user 
judgments from the data acquired during the interaction. The most famous approach 
in this respect is the PARADISE framework ([4]), which assumes that user 
satisfaction can be modeled as a function of task success and dialog costs in terms of 
efficiency and dialog quality. The latter can be described with interaction parameters, 
such as the dialog length. A prediction model is obtained by training a linear 
regression function with the interaction parameters as predictors and user judgments 
as dependent variable. Such models are typically database-specific, and can predict 
about 50% of the variance in the observed judgments ([5]). Other machine learning 
techniques may be used for modeling the relation between parameters and judgments, 
e.g. HMMs ([6]). However, the relation between parameters and judgments still 
depends on the system and its specific problems ([7]). If the user judgment, however, 
could be derived from the acoustic features of the user utterance, this relation should 
be independent of the system or the database. Therefore, such relations are worth 
analyzing. 
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In a related line of research, unsuccessful dialogs (e.g. because of user hang-up) 
were predicted ([8], [9]). Like in PARADISE, typically parameters describing the 
interaction are used as predictor variables; however, attempts were made to 
incorporate emotion recognition from audio features in such predictions ([10]). Direct 
relations between audio features and user ratings were also analyzed ([11]), however, 
unlike in our study, features are averaged across entire dialogs, as judgments were 
collected only once after the interaction. 

Data 

In order to analyze the judgment behaviour of different users, we designed an 
experiment in which the users judged the quality of the dialog “so far” after each 
dialog turn. Judgments were provided on a number pad with an attached rating scale. 
As we were interested in the differences in the users’ judgment behaviours, we forced 
the dialogs to follow predefined scripts, by letting a Wizard-of-Oz control the system 
actions. The dialog scripts were designed to contain a number of interaction problems 
observed in previous experiments or known from the literature, such as recognition 
errors, prompt wording problems, or task failure. In addition, we combined these 
problems with different confirmation strategies and different complexities of the 
possible user replies (i.e. 1 or 2 concepts at a time). 

In order to keep up a plausible interaction scenario, we designed a consistent dialog 
strategy (i.e. system) for all tasks, which was flexible enough to cover a large part of 
the above problems. The resulting system mock-up resembles a typical slot filling 
strategy with system initiative in the domain of restaurant information. 

25 users (13 f, 12 m) aged between 20 and 46 years (M=26.5; STD=6.6) 
participated in the experiment. Each user performed the same 5 interactions, preceded 
by a test run. The resulting dataset consists of 945 recorded turns with corresponding 
user judgments of the dialog up to this turn. The distribution of judgments is: 40 
“bad”, 120 “poor”, 199 “fair”, 371 “good”, 215 “excellent”. Further details on the 
experiment can be found in [12]. 

In order to analyze the classifiability of the data based on its acoustic features, we 
limited the complexity to a two-class problem. We merged the user satisfaction 
annotations into a binary decision: judgments from 1 to 3 were regarded as 
dissatisfied and 4 to 5 as satisfied. We also tried to group labels 3 to 5 as satisfied but 
this resulted in a much worse automatic classification. 

Results 

In a first step, we tried to predict the judgments from features describing the 
interaction. Speech recognizer errors, confirmation strategy and task success proved 
to be most useful for these models. We used a Hidden Markov Model to assess the 
development of the ratings over the course of the dialog. Features were modelled as 
emissions and ratings as states. This topology allows to predict the distribution of 
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judgments at each dialog turn. Comparison with the empirical distribution showed 
satisfactory results on independent test data (see [6] for detailed results). 

In a second step, we investigated the classifiability based on the acoustic 
characteristics of the data. Whether the satisfaction can be predicted by acoustic 
measurements is a fascinating question, given that no evidence by manual inspection 
exists beforehand.  

Based on the Praat toolkit [13], we extracted the following 64 features from the 
audio files: 

• Pitch: Maximum, minimum, time of maximum and minimum, range, mean 
and standard deviation. 

• Duration: total duration, relation of voice and unvoiced frames. 
• Intensity: Maximum, minimum, time of maximum and minimum, range, 

mean and standard deviation. 
• Formants: Maximum, minimum, time of maximum and minimum, range, 

mean and standard deviation of first five formants. 
• Spectrum: Mean of 12 MFCCs. 

In order to get a speaker-separated training and test-set, we used the leave-one-
speaker-out method and did a 25-fold cross validation by using 25 times the data of 
one speaker for testing and the data of all other speakers for training.  

Utilizing the WEKA classification toolkit [14], we classified the data with the 
logistic classifier [15], which minimizes a matrix distance based on regression 
functions. 

Before classification, we selected the 25 best working features with WEKA’s 
“SVMAttributeEval” method, which evaluates the worth of an attribute by using a 
Support Vector Machine (SVM) classifier. Attributes are ranked by the square of the 
weight assigned by the SVM. 

Because more of the 945 turns were labelled as “satisfied” (586) than “dissatisfied” 
(359), the baseline for the trivial classifier that always votes the majority class is 
0.619 overall accuracy.  

Instead of using the overall accuracy to evaluate a classifier, we prefer the 
unweighted average F1 value (UAF), because it is invariant with respect to unequal 
distributions. F1 is the harmonic mean of precision and recall and computes for each 
class as twice the product of recall and precision divided by its sum. The UAF then 
computes as 
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with cnr  and cnp being recall and precision of the nth class. 
The baseline UAF is 0.382. With the optimized 25 feature set, the classifier 

reached a  UAF of 0.449 while the overall accuracy was only slightly higher (0.622). 

Conclusion 

It is quite remarkable, given that the classification of this data is not based on listener 
impressions but on speaker introspection, that acoustical analysis can help to predict 
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the data, even if the accuracy is not very high. Note that, in contrast to other emotion 
detection tasks described in literature, in this case the emotional annotation was done 
by the user himself (assumed that user satisfaction is related to emotional states).  

We admit though, that our test set is too small to allow for general conclusions. 
With only 25 persons for training and test, general assumptions can not be made and 
this investigation must be seen as preliminary.   

As futures steps, beneath the acquisition of larger, and perhaps more natural, data 
sets, the modelling of the time dynamics of the dialog progression as well as speaker 
adoption can be investigated. 
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