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ABSTRACT

We discuss the influence of random splicing on the perception
of emotional expression in speech signals. Random splicing is
the randomized reconstruction of short audio snippets with the
aim to obfuscate the speech contents. A part of the German
parliament recordings has been random spliced and both ver-
sions – the original and the scrambled ones – manually labeled
with respect to the arousal, valence and dominance dimensions.
Additionally, we run a state-of-the-art transformer-based pre-
trained emotional model on the data. We find sufficiently high
correlation for the annotations and predictions of emotional
dimensions between both sample versions to be confident that
machine learners can be trained with random spliced data.

Index Terms— speech, emotional, random splicing,
anonymization, masking

1. INTRODUCTION

Machine learning models need data to be trained. This data
might be artificial laboratory data or natural, real world data.
Especially within the domain of emotion processing, real world
data has many advantages: firstly, acted emotions rarely occur
in the real world [1] and secondly, real world data sets are
usually much larger in size.

Nonetheless, one disadvantage of real world data, which
is especially relevant in the emotion domain, are potential
privacy risks. Emotional expression is often something we do
not want to reveal to the public as it might be private and even
embarrassing.

This is especially important in the scope of projects like the
ECoWeB project [2], which deals with a mobile smartphone
app that potentially depressed young adults can use to learn
how to deal with negative emotions. One part of the app lets
the users record audio files that are analyzed with respect to an
emotional estimate and can be sent for monitoring and tuning
to a data server. It is important that the users understand that
no-one will be able to listen to the data, firstly to keep the
data private, but also to avoid users believing that a potential
listener might react to inherent messages.

We developed a software to obscure speech content to pre-
serve privacy by “scrambling” or “random splicing” the audio

file, by splitting it into segments which then get concatenated
in random order, so that the words cannot be understood any
more.

We aim at two use cases:

1. anonymizing the speech for privacy protection

2. removing the linguistics to force human annotators of
emotional expression to focus on the extra linguistic fea-
tures and not on the linguistic content, thereby enabling
training annotation that is valid across languages

We discuss the literature in the next section and then two
experiments conducted to validate the approach: on the one
hand, manually labeling the original and the corresponding
scrambled data to find differences and on the other hand, by
predicting emotional dimensions for the data with a trained ma-
chine learning model. For the experiments, we use a database
collected from the German parliament recordings. Note that
cultural biases may occur in the data because the annotator
group is biased towards some culture.

Contributions of this paper are as follows:

• We present a software that automatically random splices
audio data to obfuscate the lexical content. To our best
knowledge, such a software has not been presented yet.

• We evaluate the approach with respect to the preser-
vation of emotional expression with both manual and
machine learning methods.

2. LITERATURE REVIEW

Generally, speaker characteristics that can be detected from
the voice fall into two categories: on the one hand, speaker
traits which do not change fastly, like age, gender, physical
size, or state of health and on the other hand speaker states
which do like emotional expression, fatigue or stress [3]. All
of these, and especially the textual content, fall into the user
private domain and might need to be protected from misuse.

According to [4], methods to preserve user privacy fall into
four categories: deletion, encryption, distributed learning, and
anonymization. Deletion can be used when speech is just part



of a signal but not crucial for the training, for example in sound-
scape detection like traffic estimation from sound. Encryption
can shelter the signal on its way from user to processor. Dis-
tributed, or federated learning is often used to train speech
recognition, for example within the COMPRISE project1 and
means that acoustic features get extracted or model parameters
updated on the user device and then transferred to a data server.
Of course these features or model updates must then make it
impossible to reconstruct the original audio signal or model
output from them.

Speech anonymization has two aspects: obscuring the
speech and obscuring the speaker, meaning the lexical content
versus the identity of the speaker. Most of the approaches in the
literature are focused on masking the speaker identity while
preserving the phonetics, because the main goal is to train
automatic speech recognition (ASR) systems, for example via
voice conversion [5, 6]. Some approaches preserve speaker
identity by substituting sensitive words [7].

There is a voice privacy challenge organized by the univer-
sity of Avignon in the scope of Interspeech2 which focused on
obfuscating the speaker identity while at the same time keep
as many speech characteristics as possible. [8] anonymize the
speaker identity by a complete re-synthesis pipeline. Nourtel
et al. [9] measure a 15 % degradation of emotion recognition
for the standard Voice privacy conversion on IEMOCAP.

In our case, we focus on keeping as much acoustic proper-
ties of the speech like prosody, articulation or voice quality as
possible, while removing the phonetic structure. Likewise, our
primary focus is not to obfuscate the speaker identity, but the
spoken content. Approaches that do this in the literature gen-
erally rely on the generation of artificial speech with similar
features, for example by Generative Adversarial Nets (GANs)
[10]. If the speech is not needed at all but a byproduct of
public audio recordings, it can of course simply be detected
and blurred [11].

3. RANDOM SPLICING

The random splicing algorithm we implemented was inspired
by the method Scherer [12] had already described in 1971.
Random-Splicing was compared with four different content-
filtering techniques in [13].

For processing the digital audio recordings of the German
parliament, our random splicing algorithm was first prototyped
as a Python notebook and then implemented in C++ as an in-
ternal openSMILE [14] component called “AudioScrambler”,
which was also used for the ECoWeB project [2]. openSMILE
is an open source framework to extract acoustic features from
audio.

Basically, our random splicing algorithm is divided into the
following two steps: Segmentation and Rearrangement. Un-
like the algorithm described by Scherer [12], no silent pauses

1https://www.compriseh2020.eu/
2https://www.voiceprivacychallenge.org/

of all kinds are removed from the data before segmentation.
In addition, the segment length in our algorithm is not fixed,
but is determined by configuring a minimum and maximum
fragment length within which to cut, so that the intersections of
the segments lie within this so-called region of interest (ROI).
The intersection point within each ROI is determined using the
root-mean-square (RMS) values, which are calculated for each
frame of the audio files in the time domain for this purpose.
Thus, no resource-intensive STFT calculation is needed. The
cut is performed starting from the lowest RMS value within
the ROI at the nearest zero-crossing to reduce the potential of
pops in the resulting audio signal. This cut point is also the
starting point for the next segment.

In the second step, the resulting segments are rearranged in
a pseudo-random order by shuffling their list indices, in such
a way that no segment is connected to any segment that was
already connected there before, unless it is the last remaining
segment. This ordering is intended to enhance the masking
effect. Optionally, each segment is also reversed with a config-
urable probability, i. e., played backwards during playback, to
further enhance the masking effect in a different way.

In context of this study, segment inversion was not applied
in order to keep the unnatural modification of the audio data
within certain limits. The configured minimum and maximum
fragment lengths were 300 ms and 1000 ms. In the case of
the scrambled German parliament recordings, this means that
individual words can often still be recognized or guessed,
while original partial sentences occur only in small numbers.
An informal listening test showed that the rendered audio was
incomprehensible.

4. THE DATASET

We tested the approach on a database of German parliament
speeches. The database contains data from 9 German politi-
cians. After a manual segmentation the data consists of 1198
segments spoken by the nine politicians. The age span was
from 40 to 77 years, with 6 men and 3 women. All segments
were then random spliced as described in Section 3 and manu-
ally annotated for emotional expression. For reproducibility,
the data can be accessed via Zenodo3

5. MANUAL EVALUATION

12 annotators employed by audEERING GmbH rated the
whole set of original segments with respect to the three dimen-
sions arousal, valence and dominance. 10 annotators rated the
random-spliced set, 6 of them the whole set and the remaining
4 a substantial part of the data (33 to 66 %). The annotators
were instructed to rate the samples on a scale from -10 to 10
for each dimension. We used the evaluator weighted estimator
(EWE) [15] of the labels as ground truth. No offset correction

3https://zenodo.org/record/7224678



PCC CCC pairwise t-test
Arousal .785 .548 > .001
Valence .524 .519 > .001
Dominance .603 .545 > .001

Table 1. Results of the manual annotations

Fig. 1. Box- and swarmplots for arousal, valence and domi-
nance in the orginal and scrambled versions

was performed. In Figure 1, we depict the distributions of the
labels for arousal, valence and dominance for random-spliced
and original samples, respectively. It can be easily seen that
the labels differentiate mainly for the arousal dimension. The
majority of the valence labels are negative which is probably
due to the domain: politicians speaking in parliament. Arousal
and dominance are both clearly on the positive side, which also
makes sense with respect to the domain. It seems that arousal
also gets overestimated for the random spliced versions.

Table 1 summarizes our statistics to estimate the differ-
ences: we computed Pearson’s correlation coefficient as well
as Concordance Correlation Coefficient and run pairwise T-
tests on a 95 % confidence interval. Although all T-tests clearly
show that the influence of random splicing on the samples is
a highly significant one, the correlation between the corre-
sponding samples is quite high, especially for arousal and least
for valence, which tends to be over-estimated for the random
spliced samples.

6. MODEL EVALUATION

We evaluate a dimensional SER model on both the original and
the scrambled data. The model training follows the procedure
described in [16]. We use a model with the wav2vec 2.0 ar-
chitecture [17] that has been pre-trained on 4 different speech
corpora with a total duration of 63 k hours [18]. The num-

CCC s10 CCC s6 PCC
Arousal (original) .134 .409 .757
Arousal (scrambled) .101 .405 .748
Valence (original) .055 .080 .132
Valence (scrambled) .090 .135 .258
Dominance (original) .091 .351 .712
Dominance (scrambled) .075 .319 .656

Table 2. Results of the model predictions

ber of transformer layers is reduced from 24 to 11, a number
which greatly reduces the required computing resources with-
out sacrificing a significant loss in performance. The pruned
model is then fine-tuned on the emotional dimensions arousal,
dominance and valence by freezing the convolutional layers
and re-training only the 11 transformer layers. The embed-
dings of the last hidden layer are aggregated by an average
pooling layer, and then forwarded to a linear output layer and
a sigmoid function. The training is run for 3 epochs, with a
batch size of 32, a fixed learning rate of 1e − 4, and with a
concordance correlation coefficient (CCC) loss. We use the
official train and dev splits of MSP-Podcast Corpus version
1.7 [19] for fine-tuning.

As previously discussed, the annotators of the German
politician data set were instructed to rate the segments out of
the range (−10, 10). Scaling the data via min-max scaling
from the annotator range to the range of (0, 1), (abbreviated as
s10), results in a narrow spread of ratings. Another option for
the scaling is to look at the actually occurring minimum and
maximum annotations. Since no labels below -6 and above 6
occur, we also evaluate the model predictions using min-max
scaling from the range (−6, 6) to (0, 1) (abbreviated as s6).

The model achieves a CCC of 0.745, 0.646, and 0.635
for arousal, dominance and valence on the test-1 split of the
MSP-Podcast version 1.7 dataset. The PCC results (in the
same order) on the same data are given by 0.750, 0.668, and
0.637.

7. RESULTS AND DISCUSSION

The correlation of the model prediction with the true labels is
shown in Figures 2, 3 and 4, using scaling s6 for the ground
truth. The ranges of the model predictions are generally wider
than the scaled politician dataset, especially for valence. In
Table 2, we show the model performance in terms of CCC
when using scales s10 and s6, as well as PCC, which is scale-
invariant. In terms of CCC, for either scaling version, per-
formance is considerably lower than the in-domain model
results. Looking at the PCC of arousal and dominance how-
ever, comparable results are achieved. On the original sets,
the PCC values for arousal, 0.757, and dominance, 0.712 are
even better than on the in-domain results on MSP-Podcast. On
valence, results are significantly worse in terms of both CCC
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Fig. 2. Correlation of the original and scrambled arousal data
scaled to s6 with the respective model predictions
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Fig. 3. Correlation of the original and scrambled dominance
data scaled to s6 with the respective model predictions
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Fig. 4. Correlation of the original and scrambled valence data
scaled to s6 with the respective model predictions

and PCC on the politician datasets, reaching at best a PCC of
0.258 on the scrambled data. For both arousal and dominance,
the model predictions are better on the original data than the
scrambled data. In contrast, on valence, the model predictions
have a higher CCC and PCC than on the original dataset.

As shown in Table 2, the model predictions have a higher
CCC and PCC on scrambled data compared to the original data.
This can be interpreted in that any linguistic information is no
longer perceived by the annotators, and valence is rated solely
based on paralinguistic characteristics. Although wav2vec2.0
models that have been pre-trained on large amounts of data
have been shown to exploit linguistic data [20], the evaluation
model has been trained on English data only. Therefore, it is
understandable that the model performs better on the valence
task, where the linguistic component has been removed. Still,
a comparable value compared to the in-domain results is not
achieved for either of the two versions.

8. CONCLUSION

We investigated the influence of random splicing on the emo-
tional expression of German parliament speech, on the hand
by an analysis of manually labeled samples and on the other
by predicting the emotional dimensions with a pre-trained
machine learning model. It has been shown that there are dif-
ferences between the original and random spliced samples, but
not to a degree that would hinder the assessment of emotional
expression.

The model prediction did not really work with respect
to valence, but this was true irrespective of random splicing
and probably due to the language difference between the test
data and the pre-trained model. Future investigations could
deal with more elaborate splicing algorithms which may be
informed by linguistic embeddings in order to less disrupt
valence aspects.
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