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ABSTRACT

Data sparseness is an ever dominating problem in automatic emo-
tion recognition. Using artificially generated speech for training or
adapting models could potentially ease this: though less natural than
human speech, one could synthesize the exact spoken content in dif-
ferent emotional nuances - of many speakers and even in different
languages. To investigate chances, the phonemisation components
Txt2Pho and openMary are used with Emofilt and Mbrola for emo-
tional speech synthesis. Analysis is realized with our Munich open
Emotion and Affect Recognition toolkit. As test set we gently limit
to the acted Berlin and eNTERFACE databases for the moment. In
the result synthesized speech can indeed be used for the recognition
of human emotional speech.

Index Terms— Speech Synthesis, Affective Computing, Emo-
tion Recognition, Speech Analysis

1. INTRODUCTION

If synthesized speech would be suited to train or adapt acoustic mod-
els for the recognition of human emotional speech, countless options
would open up: not only could the ever-present data sparseness in
the field [1] be overcome in general, but emotional speech could
be produced for different target groups by age or gender, in differ-
ent and also sparse resource languages, and fitting to the spoken
content at hand. The latter would help overcome the challenge of
text-independent emotion recognition: provided a reliable automatic
speech recognition one could first recognize the phonetic content, and
then re-produce it in various facets for the recognition of emotion.
This step can be realized without explicitly producing audio of the
synthesized speech. The feasibility was demonstrated successful for
a distantly related audio-task: in [2] improved recognition of music
chords is shown by synthesis of training material from MIDI sym-
bolic music. Numerous different sound fonts can be used to obtain
audio realizations of chords, just as numerous different speakers and
texts can be used in our case to produce virtually countless training
instances. Whether this concept is generally applicable for the recog-
nition of emotion in speech will be the subject of the present paper:
we first generated synthesized speech with matching textual content
to the database of human speech by two different phonemisation com-
ponents (in order to gain as much additional data as possible), namely
Txt2Pho and openMary, in combination with Emofilt and Mbrola.
Next, we use our open source Emotion and Affect Recognition toolkit
[3] to produce a 6 k space of acoustic features. For experiments we
decided for our Berlin Emotional Speech Database as introduced in
[4] and the eNTERFACE corpus for cross-corpus tests [5]. Extensive
test-runs are carried out using Bayesian Networks as classifier of
choice.

The structure is as follows: in Sec. 2 and Sec. 3 we provide
details on the synthesis and analysis parts prior to the description of
the databases in Sec. 4 that serve for the experiments detailed in Sec.
5. The paper ends with our conclusions in Sec. 6.

2. EMOTIONAL SPEECH SYNTHESIS

2.1. Overview

Speech synthesis is usually done in a two step approach. First, the
text gets analyzed by a natural language processing (NLP) module
and converted into a phonemic representation aligned with a prosodic
structure, which is then passed to a digital speech processing (DSP)
component in order to generate a speech signal. We developed an
emotional speech synthesis system on the basis of Mbrola [6]. In
order to obtain as many speech samples as possible, we used two
different phonemisation components, namely Text2Pho and open-
Mary [7] for natural language processing. Emofilt acts as a trans-
former between the phonemisation (Text2Pho or openMary) and the
speech-generation component (Mbrola). The emotional simulation is
achieved by a set of parametrized rules that describe manipulation of
certain acoustic aspects of a speech signal. The rules were motivated
by descriptions of emotional speech found in the literature. Before the
rules are applied by Emofilt, the input phoneme chain gets syllablised
by an algorithm based on sonority hierarchy. In addition, stressed
syllables are identified as those that carry local pitch contour max-
ima [8]. For the experiments we synthesized the 10 sentences of the
Berlin Emotional Database (cf. sec. 4), simulated 8 target emotions
and emotion-related states (boredom, despair, fear, happiness, hot
anger, joy, sadness, and yawning) plus neutral with Emofilt, using all
seven German voices for Mbrola (4 female and 3 male), thus getting
1 260 samples (10× 2× 9× 7). The following sections describe the
modifications provided by EmoFilt.

2.2. Acoustic Parameter Modification Methods

The pitch contour of the whole input as well as selected syllables
can be modified by altering either the level, the range or the form of
contour.

The speech rate can be modified for the whole phrase, specific
sound categories or syllable stress-types separately by changing the
duration of the phonemes (given as a percentile). Because with
Mbrola the voice quality of the speech is fixed within the diphone
inventory, we had to restrict ourselves to jitter (fast fluctuations of the
F0-contour) and vocal effort in terms of voice quality modification. In
order to simulate jitter, the F0 values can be displaced by a percentile
alternating down and up. Respecting vocal effort, for the German
language exist two voice-databases that were recorded in three voice-
qualities: normal, soft, and loud (cf. [9]). Considering articulation



modification, a diphone synthesizer has a very limited set of phoneme
realizations and does not provide for a way to do manipulations with
respect to the articulatory effort. Thus, the substitution of centralized
vowels with their decentralized counterparts and vice versa is possible
as a work-around to change the vowel precision.

2.3. Simulating Emotional States

The modifications for the eight emotion categories used in the oncom-
ing experiments are, as stated above, inspired by a literature review,
manually fine tuned, and partly verified by perception experiments
[10]. Emofilt is freely available1 and the reader is invited to reproduce
the simulations.

Of course the emotional expression that is generated by these
rules is very prototypical and only one possibility to display the target
emotions. In order to get a higher variety it would be possible to
randomly shift the parameters for the modifications slightly, or use
the Emofilt graded-emotion function which generates stronger or
weaker versions of the modification rules.

3. EMOTIONAL SPEECH ANALYSIS

We use a systematic generation of features using our open source
feature extraction [3]. In detail, the extended set in comparison to
[11] comprises of 39 low-level descriptors as dc offset (DC), extremes
(Min, Max), and zero-crossing-rate (ZCR) from the time signal, root
mean square (RMS) and logarithmic (LOG) frame energy, pitch (F0,
normalised to 500 Hz), strength, and quality as well as harmonics-to-
noise ratio (HNR) by autocorrelation function, and Mel-frequency
cepstral coefficients (MFCC) 0 – 15. To each of these, the delta and
double delta coefficients are additionally computed. Next, 51 func-
tionals such as mean, absolute mean, standard deviation, variance,
kurtosis, skewness, minimum and maximum value, relative position,
and range as well as two linear and three quadratic regression coeffi-
cients with their mean absolute (MAE) and square (MSE) errors are
computed per speech turn as given by the databases. Thus, the total
feature vector contains 39 · 3 · 51 = 5 967 attributes. More details
on feature implementation and choice are found in [3], where the
exact same set has been evaluated for tests on six standard corpora
including the human speech ones investigated herein.

The classifier of choice in this work is a simple Graphical Model
in form of a hierarchical Bayesian Network with discrete observation
nodes and one top-level parent node which lead to slightly better
results than Support-Vector Machines (SVM) as applied in most of
our previous investigations (cf. e. g. [11]). For optimal results we
found it best to use the Kononenko MDL criterion [12] for feature
discretization and not to standardize the features per corpus. Scores
are based on entropy as measure throughout model topology opti-
mization. Out of the original large feature space a small subset is
found by using correlation-based feature selection with greedy step-
wise search leaving the testing corpora out. Thus, between 106 – 157
features are used. These are roughly 42 % cepstral, 29 % spectral,
16 % pitch-related, 7 % directly based on the time signal, 4 % energy
related, and the remainder is based on voice quality.

4. EMOTIONAL SPEECH DATABASES

The well known set chosen to test the effectiveness of our emo-
tion classification experiments is the freely available studio recorded
Berlin Emotional Speech Database (EMO-DB) [4], which covers

1http://emofilt.sourceforge.net

anger, boredom, disgust, fear, joy, neutral, and sadness speaker emo-
tions. The spoken content is pre-defined by ten German emotionally
neutral sentences as “Der Lappen liegt auf dem Eisschrank” (The
cloth is lying on the fridge.). Ten (five female) professional actors
spoke these repeatedly in each target emotion. We use the 494 speaker
turns usually considered in works on this set (e. g. [13]).

For cross-corpus evaluations among human speech sets, we need
a secondary set: the eNTERFACE [5] corpus is a further public, yet
audiovisual emotion database. It contains induced anger, disgust,
fear, joy, sadness, and surprise speaker emotions. 42 subjects (eight
female) from 14 nations are included. It consists of office environment
recordings of pre-defined spoken content in English. Each subject
was instructed to listen to six successive short stories, each of them
eliciting a particular emotion. Overall, the database consists of 1 170
samples in almost perfect class balance.

5. EXPERIMENTS AND RESULTS

As evaluation measures we employ weighted (WA, i. e. accuracy)
and unweighted (UA, thus better reflecting imbalance among classes)
average recall as suggested in [11]. We further provide the area under
the receiver operating characteristic (ROC). The receiver operating
characteristic plots the true positive rate (TPR) over the false positive
rate (FPR) achieved by a binary classifier. In the case of multiple
emotions, i. e. classes, this value reflects the average separation ability
between one class and the others, i. e. the detection ability. The
selection of these measures is justified by the non-equal distribution
of instances among classes. The highest possible AUC (area under
curve) is 1.0, equal to the whole graph area, and achievable only by
a ‘perfect’ classifier. Random guessing has an AUC of 0.5, since it
corresponds to the diagonal line in the ROC space. A reasonable
classifier should therefore have an AUC that is significantly greater
than 0.5, with better classifiers yielding higher values. All tests are
carried out in strict speaker independence. In fact, apart from the
first experiment where we investigate whether synthesized speech
can outperform speech from the same corpus under ideal conditions,
the challenging requirement of complete independence of speakers,
room conditions, microphoning, spoken content, and understanding
of the target emotions is met by full cross-corpus testing. Overall, we
carry out four generally different types of experiments to evaluate
the benefit of synthesized speech for acoustic model training and
adaptation.

Throughout the first two experiments we use the EMO-DB
database as test-set of human emotional speech. We first consider
training on synthesized speech versus training on human speech from
the same corpus. In the case of human versus human speech speaker
independence is preserved by splitting the EMO-DB into a first
training partition indexed EMO-DB1 containing the five speakers
with lower subject index, and a respective second partition indexed
EMO-DB2 of the five higher index speakers for testing. Note that
cross-validation is avoided for better comparability with the other
reported results. In these experiments we consider recognition of six
of EMO-DB’s original seven emotion classes, as disgust cannot be
modelled by the synthesizers at present. Table 1 displays the results.
The following mapping of synthesized emotions onto the ones of
EMO-DB was chosen: yawning was mapped onto boredom, despair
onto fear, and joy onto happiness. The other emotions were mapped
straight forward as they are labelled identically. These mappings
proved to raise recognition performance in before-hand tests.

Clearly, it was not to be expected that training on synthesized
speech could outperform training on human speech from the same
corpus, though the same spoken content was synthesized. However,



Table 1. Recognition of six (all but disgust) emotions of the Berlin
Emotional Speech Database (EMO-DB): training on human (EMO-
DB1) or synthesized speech (SYN) and testing on a disjunctive set of
speakers from EMO-DB (EMO-DB2).

Train Recall [%] Prec. [%] AUC
UA WA UA WA UA WA

6-class
EMO-DB1 76.1 79.2 83.6 81.1 0.95 0.95
SYNTH 62.0 58.4 66.1 68.1 0.91 0.90

Table 2. Recognition of 4 (anger, fear, sadness, happiness), and 3
(excluding fear) emotions of the Berlin Emotional Speech Database
(EMO-DB): training on human (eNTERFACE) or synthesized speech
(SYN).

Train Recall [%] Prec. [%] AUC
UA WA UA WA UA WA

4-class test on EMO-DB
eNTERFACE 38.8 47.2 53.2 54.7 0.81 0.80
SYNTH 54.9 61.9 74.0 68.7 0.86 0.84
eNTER+SYNTH 55.3 64.2 60.1 59.9 0.86 0.86

3-class test on EMO-DB
eNTERFACE 62.6 64.8 70.2 69.1 0.83 0.81
SYNTH 72.6 75.4 75.7 73.5 0.89 0.88
eNTER+SYNTH 75.0 79.5 81.7 79.3 0.91 0.90

the recall and precision rates seem promisingly high. We thus next
experimented with combination of human and synthesized speech
in order to see whether we can gain accuracy by increase of the
amount of training material. Sadly, however, no gain could be ob-
tained: 1:1 inclusion of human and synthesized speech resulted in
a downgrade over using only human speech. Gradually increasing
the up-sampling by a repetition factor up to as high as 24:1 in terms
of human:synthesized speech we observed an asymptotic approach
to training with only human speech. However, this could never be
surpassed.

We thus next considered a more fair comparison: in fact we car-
ried out cross-corpus evaluation when training on synthesized and
testing on human speech. This is a only sparsely researched and
difficult task. In our second experiment we therefore take the eNTER-
FACE corpus into play preserving the previously chosen mappings:
from now on we trained on either eNTERFACE or synthesized speech
or their combination and test exclusively on the EMO-DB with all
speakers. However, the set of emotions was reduced to 4 classes, as
eNTERFACE does not contain neutral or boredom as classes. We
next excluded “fear” which is apparently badly modelled both by eN-
TERFACE and the synthesized speech. Table 2 depicts all respective
results.

We next consider testing on eNTERFACE and training on either
EMO-DB or synthesized speech. This has the interesting consequence
that now the human speech and the synthesized speech are of the same
language and contain the same spoken content. They both have to deal
with the target set being in a different language and thereby naturally
of different phonetic content. Table 3 shows the respective results as
before. Note that now unweighted and weighted measures tend to be
close to each other, as eNTERFACE is almost fully balanced in terms
of classes. Further note that in this experiment the choice of classifier
was observed to be an influential factor: SVM delivered slightly

Table 3. Recognition of 4 and 3 emotions (cf. Table 2) of the eN-
TERFACE database: training on human (EMO-DB) or synthesized
speech (SYN).

Train Recall [%] Prec. [%] AUC
UA WA UA WA UA WA

4-class test on eNTERFACE
EMO-DB 40.3 39.8 46.6 46.8 0.72 0.72
SYNTH 49.0 49.0 51.8 51.5 0.75 0.75
EMO-DB+SYNTH 51.6 51.6 51.9 51.9 0.76 0.76

3-class test on eNTERFACE
EMO-DB 54.4 54.0 61.1 61.1 0.79 0.79
SYNTH 58.3 58.0 57.7 57.6 0.80 0.79
EMO-DB+SYNTH 61.9 61.5 60.8 60.8 0.81 0.81

better results (not reported) when training on human speech for this
exact experiment while the synthetically produced speech used here
seems to better be modelled when statistical classifiers (our Bayesian
Network) are used. Clearly, this depends on the implementation of
the parameter variation which seems to be well related to Gaussian
modelling. While this impacted the recall rates, the area under curve
was practically unaffected. Also, this effect was only observed for
training on EMO-DB and testing on eNTERFACE and not vice versa.

So far, both phonemisation components were used together. How-
ever, one could use the training on synthesized speech and testing on
human speech as potential guideline for the quality of the synthesis
result. We therefore next provide recognition results for each compo-
nent individually on the two sets of human speech. EMO-DB thereby
served for test with matched spoken content and eNTERFACE for
a phonetically independent setting, respectively. For better compa-
rability between these two different settings, we limit the number
of target emotions to the 4 emotions contained in both considered
target sets of human speech. Results for the 4- and 3-class tasks as
before are found in Table 4. Finally, we inversed test and train in
principle, and observed how training on human speech will react
when confronted with synthesized speech. This resembles an ‘out-of-
the-box’ measurement of synthesized speech quality with respect to
emotion without the need of training with speech of the synthesizer.
Interestingly, anger is hardly recognized here, while before (i. e. when
training on synthesized speech and testing on human speech), fear
had been troublesome. We thus do not consider the fear reduced set
in the results portrayed in Table 5.

6. CONCLUSION

We considered a completely novel approach to the generation of ever-
sparse learning material for emotion and affect recognition: using
synthesized speech for training and adapting acoustic models. To
summarise, the first step was made with surprising success: for cross-
corpus tests on acted speech high benefit could be proven, as we will
detail out in the following. Significance refers to a one-tailed test
performed on unweighted average recall. When training and testing
from the same human speech corpus, no benefit in adding synthesized
speech could be found. Also, training exclusively on synthesized
speech clearly fell behind in direct comparison. This seems to be
expected, as the synthesized speech does not take room acoustics,
noises present, and microphone characteristics into account. Also,
potentially deviating understanding of the emotions may exist. We
thus next shifted to cross-corpora analyses which are considerably
closer to a real-life application of an emotion recognition system:



Table 4. Recognition of 4 and 3 emotions (cf. Table 2): training on
synthesized speech using openMary or Txt2Pho for phonemisation.

Train Recall [%] Prec. [%] AUC
UA WA UA WA UA WA
4-class test on EMO-DB

MARY 56.0 63.2 75.2 69.7 0.87 0.86
TXT2PHO 57.2 63.2 50.0 52.1 0.84 0.82

3-class test on EMO-DB
MARY 71.6 75.4 76.0 73.4 0.90 0.89
TXT2PHO 77.1 77.5 78.4 77.2 0.89 0.87

4-class test on eNTERFACE
MARY 46.0 45.9 48.6 48.4 0.73 0.74
TXT2PHO 49.8 49.9 53.0 52.7 0.75 0.75

3-class test on eNTERFACE
MARY 55.1 54.7 55.4 55.3 0.79 0.79
TXT2PHO 60.8 60.5 60.4 60.4 0.80 0.80

Table 5. Recognition of 4 and emotions (cf. Table 2): testing on
synthesized speech using openMary or Txt2Pho for phonemisation.

Test Recall [%] Prec. [%] AUC
UA WA UA WA UA WA
4-class train on EMO-DB

MARY 54.4 56.8 68.2 66.0 0.84 0.82
TXT2PHO 43.1 40.8 37.2 40.8 0.75 0.71

4-class train on eNTERFACE
MARY 48.5 55.4 62.5 59.2 0.82 0.79
TXT2PHO 48.8 54.3 59.2 56.5 0.80 0.78

independent of speakers, acoustic, coding, and transmission influ-
ences emotions should be assigned according to a more ‘general’
understanding of emotions, at least as long as they are rather proto-
typical. In the cross-corpus experiments we found a true surprise:
synthesized speech was found to be the better choice, not only if
the spoken content was matched (significance levels of 0.001 for the
4-class and 0.01 for the 3-class task), but even if synthesized speech
and human in training were both containing the same, yet different
phonetic content to testing (significance levels of 0.001 for the 4-class
and 0.1 for the 3-class task). Adding human speech to the synthesized
speech generally further improved the recall and precision rates and
raised the significance level over only human speech; however, no
statistical significance was found over synthesized speech without hu-
man speech. Thus, in our tests synthesized speech proved the optimal
choice throughout the cross-corpora experiments. While differences
among the measurements may depend on the chosen classifier, the
tendency was not disrupted in our experiments. We next investigated
differences between the two phonemisations used. Here, apart from
the 4-class task on EMO-DB, significantly better results were ob-
tained using Txt2Pho (level 0.1 to 0.05). In fact, using only one
phonemisation would have been the better choice if one compares
Tables 4 and 5 with the lines labelled ‘SYNTH’ in Tables 2 and 3,
where both where used, which however lead to a downgrade. Thus,
mixing of different phonemisation was not found beneficial in our
experiment, and the above described trends are even amplified if the
better phonemisation component would have been used, exclusively.
As the Tables 4 and 5 show, no significant difference in terms of
unweighted average recall could be found whether one trains on syn-
thesized speech and tests on human speech or vice versa. Only one

exemption is observed: the Txt2Pho phonemisation falls significantly
behind openMary when the training is carried out on EMO-DB. How-
ever, clear differences among the emotions were observed. In terms
of AUC and accuracy however, better rates are seen when training on
human speech and testing on synthesised speech.

For a first proof of concept, we had limited our data choice to
acted emotion. Naturally, manifold subsequent steps are left for future
research prior to drawing general conclusions: fore mostly, tests with
spontaneous speech and naturalistic emotions of low prototypicality.
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[3] F. Eyben, M. Wöllmer, and B. Schuller, “openEAR – Introduc-
ing the Munich Open-Source Emotion and Affect Recognition
Toolkit,” in Proc. Affective Computing and Intelligent Interac-
tion (ACII), Amsterdam, The Netherlands, 2009, IEEE.

[4] F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier, and
B. Weiss, “A Database of German Emotional Speech,” in Proc.
Interspeech, Lisbon, Portugal, 2005, pp. 1517–1520, ISCA.

[5] O. Martin, I. Kotsia, B. Macq, and I. Pitas, “The enterface’05
audio-visual emotion database,” IEEE Workshop on Multimedia
Database Management, 2006.

[6] T. Dutoit, V. Pagel, N. Pierret, F. Bataille, and O. Van der
Vreken, “The mbrola project: Towards a set of high-quality
speech synthesizers free of use for non-commercial purposes,”
in Proc. ICSLP, 1996.
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