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Abstract
We researched how “likable” or “pleasant” a speaker appears
based on a subset of the “Agender” database which was recently
introduced at the 2010 Interspeech Paralinguistic Challenge. 32
participants rated the stimuli according to their likability on a
seven point scale. An Anova showed that the samples rated
are significantly different although the inter-rater agreement is
not very high. Experiments with automatic regression and clas-
sification by REPTree ensemble learning resulted in a cross-
correlation of up to .378 with the evaluator weighted estimator,
and 67.6 % accuracy in binary classification (likable / not lik-
able). Analysis of individual acoustic feature groups reveals
that for this data, auditory spectral features seem to contribute
the most to reliable automatic likability analysis.
Index Terms: speaker traits, likability, classification

1. Introduction
How much we like a speaker based on the sound of her/his voice
and manner of speaking is a fascinating topic. It is part of a
higher family of problems: speech based classification. Speech
based classification attempts to categorize people based solely
on their voice and way of speaking. The categories may be rela-
tively invariant like age, gender or dialect, or time changing like
emotional state. These features differ strongly with respect to
the extent they can be detected in a speech signal, for example
the sex of a person can be found out with high probability due to
the fact that women have shorter vocal folds and therefore speak
with a higher pitch than men. Women have proven to be con-
sistent in their estimation of pleasantness of men’s voices, and
also height, weight and age, although height was not correctly
estimated [1]. Listeners can also ascribe personality traits – like
the introversion-extroversion opposition – and attractiveness to
a speaker purely based on short samples of his/her voice, e. g.,
[2].

In previous research [3], we have already investigated how
”likable” or ”pleasant” a speaker appears based on the Emo-
DB, a database of 10 actors simulating emotional arousal. One
of the biggest drawbacks of this study was the limited num-
ber of speakers, which is by far not enough to generalize over
speaker specific differences. In search for a larger database,
ideally publicly available in order to facilitate comparison stud-
ies, we decided to use the Agender database, [4]. The Agender
database was recorded originally to study automatic speaker age
and gender detection in voice portals and it contains about 940
speakers of mixed age and gender recorded over landline and
mobile telephone network. The fact that this data is of lim-
ited bandwidth and the single utterances consist only of a few
words is a disadvantage with respect to likability rating, but cor-

responds to the constraints given in a real application scenario,
e. g., if a call center agent would like to test the likability of
his/her own voice. Generally the research on likable voices has
many applications, e. g., to enhance text-to-speech synthesizers
or for self-assessment, further discussed in [5].

The article is structured as follows. In section 2, the selec-
tion of the audio data is explained. Then, section 3 reports on
the procedure to judge the samples by human listeners. The next
section analyses the results with respect to consistency between
listeners and hidden dependencies. Section 5 finally attempts an
automatic classification and regression of the perceived likabil-
ity. The last section concludes the article.

2. Data selection
The spoken content of the database is based on 18 utterances
taken from a set of utterances listed in detail in [4]. The topics of
these were command words, embedded commands, month, week
day, relative time description, public holiday, birth date, time,
date, telephone number, postal code, first name, last name,
yes/no with according free or preset inventory and correspond-
ing ‘eliciting’ questions as “Please tell us any date, for example
the birthday of a family member.”.

The database contains at least 100 German speakers for
each of seven age/gender groups acquired from all German Fed-
eral States without perfect balance of German dialects. The age
sub-clusters (7-14, 15-24, 25-54, 55-80 years) are of equal size:
to account for the different age intervals of the groups, CHIL-
DREN and YOUTH are uniformly distributed within 2 year clus-
ters and ADULTS and SENIORS in 5 year clusters. This means,
for example, that 25 children from seven to eight years and 20
young-aged females between 17 to 18 years participated. All
age groups, including the CHILDREN, have equal gender distri-
bution. For the experiments described in this paper we excluded
the children with the aim to reduce data. It is probably hard to
judge likability of a child’s voice because one tends to find chil-
dren ‘cute’ in any case.

Excluding the children, we came up with the age and gen-
der distribution shown in Table 1. Because this approach still
leaves 800 speakers, we used only one sentence of the available
data per speaker, in order to keep the effort for judging the data
by many listeners as low as possible. To select the sentence, we
looked at the phrases that consist of a command embedded in
a free sentence (s4 and s5 from the database) and searched for
the longest sentence available for each participant, based on the
number of word tokens. This resulted in sentences with maxi-
mum eight words length (mean: 4.4 tokens). Typical sentences
would include “mach weiter mit der Liste” (“continue with the
list”) or “ich hätte gerne die Vermittlung bitte” (“I’d like an op-
erator please”). We’re aware of the fact that the meaning of the



words might affect the perceived likability and it would have
been better to have the same text spoken by all test speakers,
but the database does not include longer texts of same wording
for all speakers.

Table 1: Distribution of age (Y: young, A: adult, S: senior) and
gender (F, M) groups in the data.

# YF # YM # AF # AM # SF # SM sum
121 112 135 129 147 155 800

3. Judging the likability
To control for effects of gender and age group on the likabil-
ity ratings, the stimuli were presented to the participants in the
following six blocks: male and female youths, adults and se-
niors, respectively. To mitigate effects of fatigue or boredom,
each of the 32 participants (17 male, 15 female, aged 20–42,
mean=28.6, standard deviation=5.4) rated only three out of the
six blocks in randomized order with a short break between each
block. The order of stimuli within each block was randomized
for each participant as well. One rating session took about one
hour. In other words, the whole data set was rated 16 times
by a pair of raters, and 16 ratings from different individuals
are available per instance. The participants were instructed to
rate the stimuli according to their likability, without taking into
account sentence content nor transmission quality. The rating
was done on a seven point scale. For playing back Sennheiser
HD 485 headphones were used. No participant reported hearing
loss. All participants were paid for their service.

4. Data analysis
A preliminary analysis of the data shows no significant im-
pact of participants’ age or gender on the ratings (mixed effects
model; gender: F (1, 28) = 1.44, p = .24; age: F (1, 28) =
1.62, p = .44), whereas the samples rated are significantly dif-
ferent (F (799, 11970) = 4.94, p < .0001).

All ratings are normalised by the evaluator weighted esti-
mator (EWE) [6]. Informally, the EWE is a weighted mean
likability rating, with cross-correlations as weights (see Eqn. 2,
Section 4). Controlling for significant effects of variation in the
transmission quality on the ratings is done with the instrumental

Table 2: 60 low-level descriptors (LLD).

4 energy related LLD
Sum of auditory spectrum (loudness)
Sum of RASTA-style filtered auditory spectrum
RMS Energy
Zero-Crossing Rate
50 spectral LLD
RASTA-style filt. auditory spectrum, bands 1–26 (0–8 kHz)
MFCC 1–12
Spectral energy 25–650 Hz, 1 k–4 kHz
Spectral Roll Off Point 0.25, 0.50, 0.75, 0.90
Spectral Flux, Entropy, Variance, Skewness, Kurtosis, Slope
5 voice related LLD
F0

Probability of voicing
Jitter (local, delta)
Shimmer (local)

Table 3: 33/6 applied functionals.

33 base functionals
quartiles 1–3
3 inter-quartile ranges
1 % percentile (≈min), 99 % percentile (≈max)
percentile range 1 %–99 %
arithmetic mean, standard deviation
skewness, kurtosis
mean of peak distances
standard deviation of peak distances
mean value of peaks
mean value of peaks – arithmetic mean
linear regression slope and quadratic error
quadratic regression a and b and quadratic error
contour centroid
duration signal is below 25 % range
duration signal is above 90 % range
duration signal is rising/falling
gain of linear prediction (LP)
LP Coefficients 1–5
6 F0 functionals
percentage of non-zero frames
mean, max, min, std. dev. of segment length
input duration in seconds

method recommended by the ITU for no-reference cases (ITU-
T Rec. P.563) [7]. As intended by the instruction there is no
significant correlation between the averaged ratings and quality
estimates (Spearman’s rho = .04, p = .27).

5. Automatic analysis
5.1. Acoustic feature set

We use the baseline feature set of the INTERSPEECH 2011
Speaker State Challenge, which was extracted by the open-
source feature extractor openSMILE [8] that also provided the
features for the Challenge, to ensure compatibility of results.
It consists of 4 368 acoustic features comprising features built
from three sets of low-level descriptors (LLD) and one corre-
sponding set of functionals for each LLD set. The LLD sets
are given in Table 2: A major focus is on auditory features, in-
cluding an auditory spectrum derived loudness measure and the
use of RASTA-style filtered auditory spectra instead of conven-
tional Mel-spectra. Further, a base set of 33 functionals is intro-
duced as shown in Table 3. To the 54 energy and spectral LLD
and their first order deltas, the base functional set and the mean,
max, min, and the standard deviation of the segment length are
applied, resulting in 3 996 features. To the 5 pitch and voice
quality LLD and their first order deltas, the base functional set
as well as the quadratic mean and the rise and fall durations
of the signal are applied only to voiced regions (probability of
voicing greater 0.7). This adds another 360 features. Another
12 features are obtained by applying a small set of six function-
als to the F0 contour (including non-voiced regions where F0 is
set to 0) and its first order derivative as also shown in Table 3.
Segments in this case correspond to continuous voiced regions,
i. e., where F0 is > 0.

5.2. Reliability and performance bounds

We designed systems for automatic analysis with the goal of
recognizing those instances that seem generally likable, as de-



Table 4: Reliability analysis of rater pairs (k = 1, . . . , 16):
Cross-correlation with the mean rating of all raters (CCk), and
the EWE of other raters (‘leave-one-out’, CCLOO

k ).

k 1 2 3 4 5 6 7 8
CCk .57 .44 .51 .59 .64 .53 .52 .55
CCLOO

k .48 .32 .43 .51 .56 .40 .42 .48
k 9 10 11 12 13 14 15 16
CCk .59 .41 .55 .40 .45 .52 .14 .55
CCLOO

k .51 .28 .47 .28 .34 .42 .01 .46

termined by a variety of raters. Thus, a consensus has to be de-
rived from the individual ratings. As a first step, we calculated
the agreement (reliability) of rater pair k = 1, . . . ,K (K = 16)
with respect to the arithmetic mean likability rating ln for each
instance n,

ln =
1

K

K∑
k=1

ln,k (1)

where ln,k ∈ {−3,−2,−1, 0, 1, 2, 3} is the likability rating
assigned by rater pair k to instance n. As a measure of reliabil-
ity for each k, we computed the cross-correlation CCk between
(ln,k) and (ln), n = 1, . . . , N . Results are shown in Table 4. It
can be seen that the the reliability in terms of CCk considerably
differed, ranging from .14 (k = 15) to .64 (k = 5). Hence,
as a robust estimate of the desired rater-independent likability
of each instance n, we used the evaluator weighted estimator
(EWE) [6], denoted by ln, instead of ln in all further analyses:

ln =
1∑K

k=1 CCk

K∑
k=1

CCkln,k. (2)

Next, to derive a rough estimate of the performance that
can be expected from an automatic regression system trained on
the EWE, we analyzed for each k the cross-correlation CCLOO

k

between (ln,k) and the EWE l
\k
n of all rater pairs except k – in

other words, a ‘leave-one-out’ reliability analysis. The results
(Table 4) suggest that a regression on the exact EWE will be
challenging – the maximum CCLOO

k is .56 for k = 5, while the
minimum is near zero (CCLOO

15 = .01), and the average CCLOO
k

is .40.

5.3. Binary classification

With possible applications in mind, it can be argued that the ex-
act EWE is not needed – rather, a decision such as ‘likable or
not?’ seems sufficient. Thus, we assigned each recording n a
binary class label L (likable) whenever its EWE ln was above
the median (0.149) of all ln, and NL (not likable) otherwise.
Consequently, both, the L and NL classes, contain 400 record-
ings in total, thus enforcing balanced training as a side-effect.

5.4. Performance evaluation

For automatic regression, we trained ensembles of REPTrees on
random feature sub-spaces, using the open-source implemen-
tation of the Weka toolkit [9], as this meta-learning technique
seems particularly suited to large, brute-forced acoustic feature
sets. In all subsequent analyses, the set of 800 recordings was
split into a training (394), development (258), and test (148)
set – this corresponds to the subdivision in the INTERSPEECH
2010 Paralinguistic Challenge [10], enforcing stratification by
age and gender, and compatibility of results.

Table 5: Performance of automatic analysis: regression and
classification by REPTree ensemble learning (2 000 trees) with
random feature subspaces (2 % for regression / 10 % for classi-
fication).

Regression Classification
CC MLE % UA % WA

Train vs. Develop .378 .618 65.4 65.5
Train vs. Test .256 .637 67.6 67.6

Figure 1: Performance of LLD feature groups in regression and
classification of the development set. Ranges correspond to dif-
ferent classifier parameters for random sub-space learning with
REPTrees (cf. Fig. 2).
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The feature sub-space size as well as the number of trees
in the ensemble were tuned by a two-dimensional grid search,
evaluating on the development set. Thereby trees were not
pruned, but the maximum tree size was limited to 25, as in the
Challenge baseline [10]. As shown in Figure 2a, best perfor-
mance on the development set in terms of CC (.378), as shown
in Table 5, is obtained for a sub-space size of 2 % and 2 000
trees. The mean linear error (MLE) in that case was .618 (on a
scale from -3 to 3).

We performed an analogous grid search for binary classi-
fication (Figure 2b), optimizing on the unweighted accuracy
(UA) on the development set. Best performance (65.4 % UA) is
obtained for 2 000 trees, with a sub-space size of 10 %.

After that, we evaluated the tuned classifiers on the test set
(Table 5). On the one hand, a very remarkable UA of 67.6 %
is obtained, which is highly significantly above chance level
(p < .001 according to a z-test, N=148). On the other hand,
regression on the EWE seems to be even more challenging on
the test set, resulting in a CC of only .256, and also higher MLE
(.637).

5.5. Relevance of feature types

We conclude our investigation of automatic analysis by assess-
ing which types of LLD contribute the most to regression, and
classification, performance. To this end, we subdivided the IS11
feature set into four groups: cepstral (CEPS), auditory spectral
(AUSP), prosodic (PROS), and voice quality (VOQU) features.
Then, we evaluated regression and classification performance



Figure 2: Optimization of REPTree parameters on development
set: sub-space size∈ {5·10−3, 10−2, 2·10−2, 5·10−2, 10−1, 2·
10−1}, number of trees∈ {10, 20, 50, 102, 2·102, 5·102, 103}.

(a) regression

10
−2

10
−1

10
10

2

10
3

Cross-correlation

sub-space size
iterations

0.10

0.20

0.30

0.40

(b) classification

10
−2

10
−1

10

10
2

10
3

Unweighted accuracy [%]

sub-space size
iterations

50.0

55.0

60.0

65.0

using REPTree ensembles on the development set, using only
one of these LLD groups, and for varying feature sub-space size
/ number of trees. Results are shown in Figure 1 as box-and-
whisker plots – boxes range from the first to the third quartile,
and all values that exceed that range by more than 1.5 times the
width of the box are considered outliers, depicted by circles.
Interestingly, it can be seen that cepstral features do not enable
robust regression or classification - in fact, the mean UA for
classification is near chance level (52 %). In contrast, auditory
spectral features seem to contribute the most to reliable auto-
matic likability analysis for regression as well as classification,
followed by prosodic and voice quality features.

5.6. Rater-Dependent classification

The observed performances in rater-independent likability
recognition are all the more remarkable as the inter-rater agree-
ment on likability is fairly low – it can be argued that the anno-
tation is highly subjective. This suggests that a rater-dependent
classification might be more robust than relying on an estimate
of ground truth likability. Such classifiers are tied to a vari-
ety of possible applications, including suggestion of likable per-
sons in a social network, based on voice recordings. Thus, we
performed additional experiments for each rater pair on the de-
velopment set, dividing the instances into NL and L instances,
using the median rating by one rater pair as threshold. Note
that a true single-rater-based classification would actually halve

the training and test data per experiment, due to our rating pro-
cedure. Using the classifier configuration that performed best
in the rater-independent case, however, results varied strongly,
and were inferior to rater-independent classification, and not
even significantly above chance in the majority of cases (min:
48.9 %, max: 63.0 %, mean: 53.2 % UA). Thus, it seems that
the correlation of acoustic features significantly increases when
using a likability estimate from multiple raters.

6. Conclusions and outlook
We have demonstrated that although inter-rater agreement on
likability is not very high, automatic analysis based on the eval-
uator weighted estimator is robust, paving the way for a multi-
tude of interesting applications in human-machine and human-
human communication, such as in voice portals or social net-
works. In binary classification, 67.6 % unweighted accuracy
have been obtained on a subset of the “Agender” database, con-
sisting of real-life telephony speech without pre-selection of
prototypical instances. As such, our results are line with typ-
ical results of paralinguistic audio analysis ‘in the wild’ (e. g.,
[10]).

Future work might include ratings of multiple samples per
speaker: This way, one could assess the consistency of individ-
ual raters, and possibly derive an even more solid ground truth
estimate for automatic learning. In that context, one might also
consider generation of additional training material by including
a variety of utterances and assigning them the EWE likability
of a subset assessed by human listeners.
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