
Fast Labeling and Transcription with the Speechalyzer Toolkit

Felix Burkhardt

Deutsche Telekom Laboratories, Berlin, Germany
Felix.Burkhardt@telekom.de

Abstract
We describe a software tool named “Speechalyzer” which is optimized to process large speech data sets with respect to transcription,
labeling and annotation. It is implemented as a client server based framework in Java and interfaces software for speech recognition,
synthesis, speech classification and quality evaluation. The application is mainly the processing of training data for speech recognition
and classification models and performing benchmarking tests on speech to text, text to speech and speech categorization software systems.
Keywords: speech, tools, transcription.

1. Introduction
This software tool was developed at our laboratory origi-
nally to annotate large quantities of speech data with emo-
tional labels, see (Burkhardt et al., 2009a) for a description
of these projects. Nowadays, the main application is lexi-
cal transcription of speech data to train new data models for
Automatic Speech Recognition (ASR) and Speech-To-Text
(STT) systems.
While ASR is used by automatic dialog systems to inter-
pret the user’s utterances and is usually domain-dependent,
STT can be used to transcribe arbitrary voice recordings
like emails, short messages or radio recordings irrespective
of domain.
In contrast to existing audio analysis tools like Wavesurfer
(Sjölander and Beskow, 2000), Praat (Boersma, 2001) or
similar, our tool is optimized for very fast manual process-
ing of large audio data sets. Several thousands of audio
files have been manually labeled with this tool in near real
time. It is comparable to platforms such as WebTranscribe
by (Draxler, 2005), but was originally focused as a training
tool for anger recognition applications. Additionally it is
used as an integrated platform for general speech process-
ing applications resulting from our work.
External tools are interfaced as libraries, native libraries,
web-services or by calling executable binaries on a file sys-
tem basis. The Speechalyzer can be used by command line
or a client graphical user interface (GUI). It will be released
as open source software.
This article is organized in the following sections. Section
2. introduces the main functionality and handling of audio
files that is common to all modules. Section 3. discusses
the way orthographic transcription and annotation can be
done with the Speechalyzer. After this, section 4. describes
how the labeling process works. Section 5. explains the in-
terfaces to automatic speech recognition, while Section 6.
deals with the speech synthesis capabilities. Finally, Sec-
tion 7. discusses the use of the Speechalyzer as an audio
classification framework. We conclude the paper in Sec-
tion 8..

2. General functionality
The Speechalyzer is a client-server based application writ-
ten in Java. Figure 1 displays the system architecture.
The general behavior, visibility of certain modules and file
paths are stored in a central configuration file for the server.

Additionally, each client is configured via applet parame-
ters. The server manages the audio files based on an internal
listing, while several clients might access audio information
and modify transcripts and annotations.
The server is implemented as a Java application, the client
as a Java applet and therefore runs with any browser and op-
erating system supporting the Java plug-in. Currently Java
version 1.6 is required.

Figure 1: Client server based architecture of the Speecha-
lyzer.

The audio files don’t have to be stored physically on the
client machine and several annotators can work in parallel
on the same database. A user management to avoid ac-
cess conflicts and perform a rights management is not im-
plemented yet and subject of a future release. Besides the
graphical user interface, a command line interface can be
used to integrate the tool into automated processes. The list
of audio files is loaded by the server at start-up, the files
which must be stored on the same machine as the server.
For each audio file, the parent directory’s name is automat-
ically used as a “dialog” designator. The term “dialog” is
used for a set of audio files that belong to one conversation,
e.g. as in a call center interaction.
All textual data describing the audio files is stored automat-
ically in accompanying text files which must reside in the
same directory and have the same name but different ex-



Figure 2: Screen shot of the Speechalyzer client GUI with maximum modules activated

tension as the audio files. These files are in the further text
referred to as “data files”.
The GUI (Figure 2) as well as the command line interface
offer import and export functionality based on text lists. An
example format would be

<audio file path> [labels | transcription]

which means that you can’t export or import both labels and
transcriptions in one step.
Different functionalities, i.e. transcription, analysis, syn-
thesis, recognition or classification, are organized in mod-
ules which can be switched on and off in the GUI.
Audio files can also be recorded from a sound device by the
client interface. These files can then renamed, recognized,
classified or synthesized just like loaded files.
A slider in the client’s GUI shows the playback progress
and can also be used to start playback at a specified time
in the audio signal. The possibility to view the audio file’s
waveform or spectrogram is not foreseen with the Speech-
alyzer, but one of the Buttons can freely be assigned to call
an external program, e.g. a Praat script, with the selected
audio file’s path as a command line argument. This does
only work if server and client run on the same machine.

3. Transcription and annotation
Transcription as well as annotation can be treated in the
same way, as in both cases the audio files have to be linked

to an orthographic representation. The tool makes no differ-
ence between them, they are both stored in the same manner
in the data file and if a user wants to use both, the differen-
tiation has to be handled by the user, e.g. by defining a tag.
The tool is optimized for fast transcription by presenting the
audio files as rows in a table. In order to avoid mouse move-
ment and unnecessary distraction from the task at hand, au-
tomatic playback of the subsequent audio when a transcrip-
tion has been performed can be activated by the so-called
“fast transcription mode”.
Additionally, several functionalities can be used to ease the
transcriber’s task:

• Automatic number conversion can be activated and
leads to the automatic conversion of numbers into or-
thographic representations.

• Integrated spell checking can also be optionally acti-
vated and leads to a spell check of the last token, i.e.
string of characters surrounded by white space. The
hunspell (Hunspell, ) library is used to perform this
step.

• The automatic tagging of words, i.e. the surrounding
of tokens by XML-tags (xml, 2008), can be achieved
by typing a two-character code followed by the F1 key.
This feature is often useful when transcribing text that
shall be used to train speech recognizers based on sta-
tistical grammars. Named entities can thus be tagged
to generate text variations, e.g. “show me flights from



<town/> to <town/>”. The codes and tag names are
specified in the client configuration.

• In a similar way, the automatic expansion of shortcuts
is done via single character codes by typing the code
and then the F2 key. Special markings as required in
some transcription markups, e.g. “[fil]”, denoting a
hesitation noise in (Höge et al., 1999), can thus be in-
serted easily.

• Abbreviations like “eg” or “etc” can also be specified
in the client configuration and are automatically re-
placed after a white space character is inserted.

• Automatic normalization based on regular expression
pattern matching rules can be used to normalize the
transcriptions as explained further in section 5..

• Lastly, prefixes can be specified and added automat-
ically to the last token by adding a character code
and its corresponding prefix to the client configura-
tion, e.g. a “*”-prefix marks a wrongly pronounced
word.

The transcription or annotation gets entered in a text input
field either directly in the GUI or in a separate window, de-
pending on the client configuration. The “Enter” character
finishes the input sequence, this means it can not be part of
the transcription.

4. Categorization
Data categorization or labeling, i.e. associating a category
from a limited set of classes with the speech data, can be
done, like the transcription task, in a fast mode. If this is
activated, the program automatically selects and plays the
next audio file if the user assigned a label.
The set of buttons that are used to label the audio data, but-
tons 1-5 and “NA” in the screen shot of Figure 2, can be
specified in the client configuration. Several labels or rat-
ings can be assigned per audio file and automatically uni-
fied by computation of the mean value. In the server config-
uration, the set of possible categories are specified as pairs
of category descriptors consisting of a numeric value and a
character string. Here is an example specification.

categories=-1,NA;0,G;1,N;2,A;3

The numeric value can be used to unify several labels nu-
merically, the character label can provide for semantic in-
terpretation, e.g. “G” for “garbage”, “A” for “anger” and
“N” for “non anger”. The numeric values are meant as
minimum labels, e.g. “1,N;2,NA” means category “N” is
assigned for values between 1 >= x < 2. The list must be
in ascending order.
To illustrate what is meant by this, we look at the use case
of anger detection as described in (Burkhardt et al., 2009b).
The labelers had the choice to assign an anger value be-
tween 1 and 5 (1:not angry, 2: not sure, 3: slightly angry, 4:
clear anger, 5: clear rage), or mark the turn as “non applica-
ble” (garbage). Garbage turns included a multitude of turns
that could not be classified for some reason, e.g. DTMF

tones, coughing, baby crying or lorries passing by. We uni-
fied the ratings by mapping them to four classes (“not an-
gry”, “unsure”, “angry” and “garbage”) to further process
as follows: in order to calculate a mean value for three judg-
ments, we assigned the value 0 to the garbage labels. All
turns reaching a mean value below 0.5 were then assigned
as “garbage”, below 1.5 as “not angry”, below 2.5 as “un-
sure” and all turns above that as “angry”.

5. Recognition
Via interface classes, a speech recognition software can be
accessed by HTTP protocol to transcribe speech files auto-
matically. This can serve two applications, firstly to be used
as a start hypothesis for manual transcription and secondly
to benchmark an existing speech recognition system.
All or a selection of audio files can be processed by the
speech recognizer and the result gets stored in the data file.
Via a toggle button in the client GUI, recognition result
as well as transcription can be displayed alternatively. By
clicking another button, the recognition result can be used
as a transcription hypothesis, as can be seen in Figure 2.
Text normalization can be done automatically be applying
a set of regular expression pattern matching rules on the
recognition result. The rules are stored in text files on the
server. One example for this would be the automatic con-
version to lower case of the text, but much more complex
transformation is possible by this mechanism, including au-
tomatic tagging of named entities and the like.
To evaluate the recognition performance, the NIST word
error rate computation script (Pallet, 2003) is interfaced by
the Speechalyzer via batch execution. Hypothesis and Ref-
erence files are generated automatically from recognition
result and transcription and the result is presented to the
client GUI in a message window as shown in Figure 3 in
the middle window.

6. Synthesis
Text To Speech synthesis (TTS) is integrated to load texts
and synthesize audio files via an interface class handling
language, voice name, sex and even emotion of the text.
Several connectors to commercial and open source synthe-
sizers are implemented. Additionally, the files can be mixed
with noise to simulate test conditions like recordings in the
open, although we admit that we ignore the implications of
the Lombard effect.
This can be used to either perform benchmarks on TTS by
judging the results with labels, test ASR modules with the
audio files, or use the audio files in dialog system applica-
tions. From the client GUI, some or all audio files can be
selected for synthesis, of course the audio content will then
be replaced. To generate new files, an audio file list with
transcriptions can be imported like described in section 2..

7. Classification
Furthermore, the Speechalyzer can also be used to auto-
matically classify speech data via interfaces to several fea-
tures extraction systems and statistical classification sys-
tems. We interfaced as feature extractors the Praat software
(Boersma, 2001) and the OpenSMILE system (Eyben et



Figure 3: Displaying evaluation output with the Speechalyzer client GUI, a 10 fold cross evaluation, the word error rate
and classification statistics.

al., 2010). As a statistical classification framework, WEKA
(Witten and Frank, 2005) is interfaced. When all audio files
are assigned to categories as described in section 4., models
can directly be trained from the tool.
Several evaluation methods can be applied to the audio
data and the models. A ten-fold cross evaluation based on
WEKA can be computed on the model as shown in Figure
3 in the left hand message window. Additionally, the audio
data can be treated as test data against the current model and
a statistical evaluation report generated as shown in Figure
3 in the right hand message window. The Speechalyzer has
been used to compute the baseline evaluation results in the
2010 Interspeech Paralinguistic Challenge (Schuller et al.,
2010).

8. Summary and outlook
We described a general software tool for speech data imple-
mented in Java. It is optimized for fast labeling and tran-
scription of very large audio file collections, but also gets
used as a general framework for all sorts of speech process-
ing like recognition, synthesis and classification.
In future releases we will probably concentrate on the in-
tegration of user models, because the Speechalyzer as it is
now can hardly be used by several users operating on the
same database in parallel. Adapters to store audio and tex-
tual data in databases are planned. Furthermore we plan to
provide for built in support of the emotional markup lan-

guage EmotionML (Schröder et al., 2010).
The software will be released as open source which hope-
fully results in new perspectives for enhancement based on
a larger user and developer community.

9. References
Paul Boersma. 2001. Praat, a system for doing phonetics

by computer. Glot International, 5(9/10):341–345.
F. Burkhardt, K.P. Engelbrecht, M. van Ballegooy,

T. Polzehl, and J. Stegmann:. 2009a. Emotion detection
in dialog systems - usecases, strategies and challenges.
In Proceedings Affective Computing and Intelligent In-
teraction (ACII), Amsterdam, The Netherlands, 9.

Felix Burkhardt, Tim Polzehl, Joachim Stegmann, Florian
Metze, and Richard Huber. 2009b. Detecting real life
anger. In Proceedings ICASSP, Taipei; Taiwan, 4.

Christoph Draxler. 2005. Webtranscribe - an extensible
web-based speech annotation framework. In Vaclav Ma-
tousek, Pavel Mautner, and Tomas Pavelka, editors, Text,
Speech and Dialogue, volume 3658 of Lecture Notes
in Computer Science, pages 747–747. Springer Berlin /
Heidelberg.

F. Eyben, M. Wöllmer, and B. Schuller. 2010. openSMILE
– the Munich versatile and fast open-source audio fea-
ture extractor. In Proc. of ACM Multimedia, pages 1459–
1462, Florence, Italy, October. ACM.

Harald Höge, Christoph Draxler, Henk van den Heuvel,



Finn Tore Johansen, Eric Sanders, and Herbert S. Tropf.
1999. Speechdat multilingual speech databases for tele-
services: Across the finish line. In Proc. of Eurospeech.

Hunspell. http://hunspell.sourceforge.net/.
David Pallet. 2003. A look at nist’s benchmark asr tests:

Past, present, and future. Proc. Automatic Speech Recog-
nition and Understanding (ASRU).

Marc Schröder, Paolo Baggia, Felix Burkhardt, Alessan-
dro Oltramari, Catherine Pelachaud, Christian Peter, and
Enrico Zovato. 2010. W3c emotion markup language
(emotionml) 1.0. http://www.w3.org/TR/emotionml/.

Bjorn Schuller, Stefan Steidl, Anton Batliner, Felix
Burkhardt, Laurence Devillers, Christian Müller, and
Shrikanth Narayanan. 2010. The INTERSPEECH
2010 Paralinguistic Challenge. In Proc. Interspeech,
Makuhari, Japan.

Kre Sjölander and Jonas Beskow. 2000. Wavesurfer - an
open source speech tool.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-
tical Machine Learning Tools and Techniques. Morgan
Kaufmann, second edition, June.

2008. W3c extensible markup language (xml) 1.0
http://www.w3.org/tr/xml/, 11.


