
Voice Search in Mobile Applications and the Use of Linked Open Data

Felix Burkhardt and Hans Ulrich Nägeli

Deutsche Telekom Laboratories, Berlin, Germany
[Felix.Burkhardt@telekom.de, hans.ulrich.naegeli@gmail.com]

Abstract

We describe our approach on voice seach in a mobile context
by a TV guide search app that integrates linked open data to
identify movies from a search query. A text parser to match
keywords against vocabularies and numerical value descriptors
is introduced.
Index Terms: voice search, mobile applications, query inter-
pretation

1. Introduction
Two trends make voice search more and more important: on
the one hand the widespread use of small mobile devices like
smart phones, wearables and soon implants, that make perva-
sive computing a reality, and on the other hand the development
of the TV as a central access point to multi-medial data in the
center of a domestic space. Both are used to connect with in-
ternet data and do make the use of traditional point, click and
type paradigms of user interaction difficult. This paper gives
an overview on a mobile app that deals with voice based access
to internet content for the TV-program. It’s the continuation of
our projects regarding voice search, after AskWiki [1] and the
AutoScout24 app [2].

Since the acquisition of Siri by Apple in 2010 and success-
ful market introduction, voice enabled search becomes more
and more natural to smart phone users. Google voice search
provides a similar service. Both offer, in addition to inter-
net search, services like voice dictation, for example to dictate
SMS, command and control (“Call Peter at home, book a table
in the Italian restaurant!”), and question answering (“What’s
the capital of Romania?”), although until now primarily in En-
glish.

Under these general services, voice search systems for re-
stricted domains have been developed. Song et al [3] describe a
system to voice search for media data. While they incorporate
a phonetic similarity model to increase recall on their data, we
do this by hand-tuning the vocabularies with synonym entries
that were detected when analyzing the user log entries. In [4],
Voice search is even used to generate robust SMS text detection
by matching the search query against a database of SMS tem-
plate snippets. Voice search generally might be a technology to
overcome problems like illiteracy and information access in the
developing world, as described in [5].

For the interpretation of queries in a Question Answering
application, in a first step the words must be processed by a
natural language interpreting module. Such frameworks re-
quire large vocabularies and have a large footprint with respect
to hardware resources and computing power. [6] use Google
search and WordNet as additional information sources. In [7],
categories, typed links and attributes are used to model a seman-
tic structure between the Wikipedia articles.

2. General Voice Search Architecture

Figure 1: Overview of the general approach.

Figure 1 gives a general overview on our approach to voice
search in a mobile application. The process is handled in three
steps.

1. We do not use a local speech recognizer but simply in-
terface the Google ASR service that is part of the An-
droid system. The disadvantage of this approach is that
the grammar used by the text parser cannot be used by
the speech recognizer, which of course would help to get
more stable recognition results, but it is more flexible
with respect to interfacing different speech recognizers,
e.g. when porting to Apple iPhones, and does not require
license fees for the ASR component which helps with the
business model.

2. The recognized text in form of a N -best list (listing the
N most probable recognition results) is handled either
by a text parser library, or alternatively sent to a text
parser server. The first approach does not require the
maintenance of a special server for the client applica-
tion, which again helps to keep production costs low; the
server based approach has the advantage that the vocab-
ularies can be synchronized with the data sources.

3. The query terms can then be searched in the database
which might be very different in nature, in our examples
it’s Wikipedia, the AutoScout24 database or aggregated
electronic program guide data from EPGS.com.

Finally, the result is displayed on the app’s graphical interface.

3. “Rootvole”: a Text Parser library
For general processing of voice queries we developed a text
parsing library named “Rootvole” that can be used to match
text with semantic concepts. The algorithm was implemented
in Java and can be described as a form of a parsing expression



grammar [8], where we generate the expressions to be detected
beforehand by regular expressions and store them in a vocabu-
lary.

The central class is the parser class, which is instantiated
as a series of vocabularies, simple text lists that describe to-
kens and synonyms, and value descriptors. Value descriptors
describe numerical values and are characterized mainly by a
unit string. Furthermore, the information whether the numer-
ical value is postfix or prefix in relation to the unit must be
stated explicitly, for example “500 euro” vs. “year 2003”. Via
the methods hasLowerBound and getLowerBound, the parse re-
sults for regions can be retrieved, an example would be “200
to 500 euro”. Via the methods isMax and isMin, it is possible
to determine whether the value is a lower or upper bound, an
example would be “at most 500 euro”. The parsing process it-
self is programmed in a two step process. Firstly, the values
are extracted by detecting the unit strings and extracting near-
by numbers as values. Secondly, the remaining bag-of-words
set, i.e. all possible string groups given a certain context depth,
is used to match against the vocabularies. We plan to release
“Rootvole” as an open source project in the near future.

4. TV guide app and Linked Open Data
The TV guide android app lets the user search the TV program
for upcoming movies by attributes like scheduled time, or genre,
for example “Action movies on tuesday evening”. This infor-
mation is available in the EPG data. For input like “Movies with
Clive Owen”, the app takes a list of movies starring Clive Owen,
looks each of them up in the schedule, and reports the date and
time of their broadcasting. Depending on the EPG’s provider,
this data may be included as well. But as a secondary source,
we tapped into some of the available collections of linked open
data, primarily DBpedia.

The big advantage of this approach is that it is very extensi-
ble. The collections themselves offer ample information about
a given movie that could be used to refine the queries (cast, du-
ration, ratings and so on). Additionally, since the knowledge
bases are linked, we can always get more data by consulting the
corresponding entry in other databases.

DBpedia1 [9] is a collection of structured information au-
tomatically extracted from Wikipedia. Its main sources are
Wikipedia infoboxes; besides, it also extracts data like catego-
rization and external links. This knowledge is represented as
Resource Description Framework (RDF) triples, i.e. as Sub-
ject – Relation – Object statements. The databases are often
called graphs, where we think of the entities – represented by
an unique resource identifier (URI) – as nodes and of the re-
lations as edges. Databases can be queried using SPARQL, a
language derived from SQL.

There are obviously different possible sources for this kind
of information. We chose DBpedia as our starting point for sev-
eral reasons, mainly: 1. DBpedia’s international nature makes it
particularly suitable for a non-English application. A large Ger-
man user base ensures that the entries stay up to date and are
correctly localized. 2. With DBpedia Spotlight2 [10], there is
a powerful tool to do Named Entity recognition in a given nat-
ural language text. We thought about incorporating Spotlight
as well. While promising, this approach wasn’t included in the
final version: Queries about the TV schedule tend to be rather
explicit and well-structured, so that a more classical parser can

1http://dbpedia.org
2http://spotlight.dbpedia.org

handle them. But the use of Spotlight could prove very useful
for queries in a less constrained field.

The German version of DBpedia contains 20.835 objects of
type movie, and 72.997 distinct entities starring in a movie –
we will consider them as actors. Of course, we could add that
we want only to retain starring entities that are of type person;
but it turns out we’d lose a lot of persons that don’t have this at-
tribute (starring persons: 22.948, starring non-persons: 50.049;
a quick search verifies that most of the non-persons are, actu-
ally, people). There are 201.501 x starring y-relations. One
of the huge advantages of Linked Open Data is that different
graphs can be interlinked. For a given movie, it is straightfor-
ward to find the corresponding entry in some other graph. This
gets especially important if we have to deal with ambiguous
movie titles (as for remakes); in this case, it’s not enough to just
start a new query in the next database. As additional source, we
used Freebase3, because it’s one of the biggest collections, and
because its very different data structure presented an interesting
challenge. Freebase entities (called topics) have a property key
for different namespaces, among them the German Wikipedia.
Starting with a DBpedia key (from which we can directly de-
duce the Wikipedia key), we can look up the corresponding
Freebase topic and get its starring actors. The two sets are then
merged. We didn’t, however, search for additional movies in
Freebase; the assumption was that the German Wikipedia re-
flects the interests of a German public quite well.

Appearances Mean Total
Known by both 3.25 5,373
Only known by DBpedia 6.28 10,377
Only known by Freebase 8.37 13,842
Found totally 17.90 29,592

Table 1: Comparison of movie-actor information in DBpedia
and Freebase. For 1,653 of 2,000 movies, both databases know
at least one starring actor.

Table 1 compares the data we pulled from the two sources.
These results are only to be taken as approximation. We didn’t
check the identities of starring actors with the same mechanism
as we did for the movies. Therefore, an actor may be listed
twice for the same movie, having a different name in the two
knowledge bases. Some observed differences include omission
of the middle name, different spelling and accentuation, differ-
ent apostrophe forms.

For better performance and reliability, the TV guide app
doesn’t query DBpedia or Freebase directly. Instead, the query
goes to a server where the extracted data is stored. This also
allows for some adequate normalization of the movie titles and
actor names. Of the 1781 programs appearing for one week and
28 stations, 87 movies were matched against Wikipedia in a trial
run of the app.

5. Conclusions and Outlook
The next steps will be to further inquiry the use of external data
sources like Wikipedia or WordNet for voice query expansion
as well as experiment with the advantages and drawbacks of
distributed versus local (client based) architectures. Another ex-
citing topic in this field is the combination of explicit semantic
modeling by expert ontologies with statistical approaches based
on large databases like DBpedia or Freebase.

3http://www.freebase.com



6. References
[1] F. Burkhardt and J. Zhou, “Askwiki: Shallow semantic processing

to query wikipedia,” Proc. EUSIPCO, 2012.

[2] F. Burkhardt, J. Zhou, S. Seide, T. Scheerbarth, B. Jäkel, and
T. Buchner, “Voice enabling the autoscout24 car search app,”
Proc. of the ESSV, Elektronische Sprachsignalverarbeitung, Biele-
feld, 2013.

[3] Y.-I. Song, Y.-Y. Wang, Y.-C. Ju, M. Seltzer, I. Tashev, and
A. Acero, “Voice search of structured media data,” International
Conference on Acoustics, Speech and Signal Processing, 2009.

[4] Y.-C. Ju and T. Paek, “A voice search approach to replying to sms
messages in automobiles,” Proc. Interspeech, 2009.

[5] E. Barnard, J. Schalkwyk, C. Van Heerden, and P. Moreno, “Voice
search for development,” Proc. Interspeech, 2010.

[6] D. Buscaldi and P. Rosso, “Mining knowledge from wikipedia
from the question answering task,” Proceedings of the 5th Interna-
tional Conference on Language Resources and Evaluation, 2006.

[7] M. Völkel, M. Krötzsch, D. Vrandečić, H. Haller,
and R. Studer, “Semantic wikipedia,” in Proceedings
of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, May 23-26,
2006, MAY 2006. [Online]. Available: http://www.aifb.uni-
karlsruhe.de/WBS/hha/papers/SemanticWikipedia.pdf

[8] B. Ford, “Parsing expression grammars: A recognition based
syntactic foundation,” Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
ACM, 2004.

[9] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker,
R. Cyganiak, and S. Hellmann, “Dbpedia - a crys-
tallization point for the web of data,” Web Semant.,
vol. 7, pp. 154–165, September 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1640541.1640848

[10] P. N. Mendes, M. Jakob, A. Garcia-Silva, and C. Bizer, “Dbpe-
dia spotlight: Shedding light on the web of documents,” in Pro-
ceedings of the 7th International Conference on Semantic Systems
(I-Semantics), 2011.


