
Voice Search in Mobile Applications with the Rootvole framework

Felix Burkhardt

Deutsche Telekom Laboratories, Berlin, Germany
[Felix.Burkhardt@telekom.de]

Abstract
We present several Android apps that deal with voice based ac-
cess to internet content on mobile apps, namely AskWiki, Au-
toScout24 search and the TV-guide app. They highlight several
aspects of voice search strategies to match user query with vo-
cabularies based on controlled, semi-controlled and linked open
databases.
Index Terms: voice search, mobile applications, query inter-
pretation

1. Introduction
We present several Android apps that deal with voice based ac-
cess to internet content, screenshots are shown in figure 1.

a) AskWiki [1] deploys a heuristic approach to answer
questions on semi-structured data without explicit modeling of
vocabularies, but simply by trials to match keywords spotted in
the query against Wikipedia article names. b) In contrast, the
AS24 app [2] uses a very controlled database, the AutoScout24
used car data, to enable voice search for second hand cars. The
main focus here is to detect numerical restriction in the query
(“from 3 to 5 thousand euro”). c) The TVGuide app [3] can be
seen as a combination of the two aforementioned approaches,
by on the one hand matching against vocabularies extracted
from the electronic program guide (EPG) and on the other ex-
panding the queries by Freebase and DBPedia lookups. It is de-
scribed in a separate article in this proceedings [3]. All of these
are driven by a common framework for voice search named
“Rootvole” developed in our labs.

Figure 1: Screen shots of the app GUIs: a) AskWiki, b) Au-
toScout24 c) TV guide

Besides using different approaches towards vocabulary
matching, the apps are differentiated by being either client-
based a) or server-based b), i.e. the semantic processing takes
place on the smartphone or on a server, both are supported by
the Rootvole library. Figure 2 illustrates the architecture.

Figure 2: Two possibilities to access rootvole a) on the client,
b) as a server implementation

For general processing of voice queries we developed a text
parsing library (Rootvole, [2, 3]) that can be used to match text
with semantic concepts. The algorithm was implemented in
Java and can be described as a form of a parsing expression
grammar, where we generate the expressions to be detected be-
forehand by regular expressions and store them in a vocabulary.
Rootvole is planned to be published as open source software.
Figure 4 shows the processing chain for the AutoScout24 App.
Rootvole is designed especially to tag short queries with seman-
tic concepts.

For the interpretation of queries in a Question Answering
application, in a first step the words must be processed by a
natural language interpreting module. Such frameworks re-
quire large vocabularies and have a large footprint with respect
to hardware resources and computing power. [4] use Google
search and WordNet as additional information sources. In [5],
categories, typed links and attributes are used to model a se-
mantic structure between the Wikipedia articles. Some authors
used Wikipedia in Question Answering systems to tackle the
TREC and CLEF challenges, e.g. [6] or [4], although they did
not use the content to answer the questions directly, but to se-
lect the most probable answer from a set of possible candidates
by comparison with the Wikipedia content. While we search
with the AutoScout24 app in a structured database give an nat-
ural language, car ad-like expression, [7] describe a system that
goes the other way round by extracting structured data from car
ads.

2. The AskWiki app
The aim of the AskWiki app is partly to provide question an-
swering and partly to facilitate search in a large Wikipedia1 ar-
ticle with a small and limited device by presenting the crucial
information as densely as possible. Wikipedia content as such

1http://en.wikipedia.org



is not stored in a formally structured or machine readable form,
but authors write texts that follow loose guidelines and sugges-
tions. Still they contain structured information in info boxes
which use a template mechanism, images depicting the article’s
topic, categorization of the article or subheadings.

As described in [1], several token combinations of the
user’s query are tested against the Wikipedia API, while allow-
ing for additional “feature words” (figure 3). When an article is
found, either the value of the table cell that matches the feature
word or the first sentence of a corresponding subchapter is pre-
sented as an answer. A list of synonyms and related concepts
is used to expand the feature words; it can be edited and ex-
tended by the user. For example, the answer to the query Where
is Trondheim located? results in the first sentence of the sub-
chapter about the geography of Trondheim.

Figure 3: AskWiki: selection of keywords

AskWiki was introduced in the market early 2012 as, to
our knowledge, the first question answering app in German,
and has since been installed by more than 50.000 users. It has
been ported to four additional languages (English, Czech, Dutch
and Finnish), although informal tests show that it works best in
German, the original target language of the approach. Today,
the new developments of DBpedia and Wikipedia’s Wikidata2

would make a complete review of the approach worth while.

3. The AutoScout24 app
The AutoScout24 app [2] lets the user search for secondhand
cars by choosing constraints from drop-down menus. With our
enhancement, the user can now click a microphone button, say
the search terms in natural language, and, after confirming the
recognition results, the menu is filled with the selected values.
The search can then be executed, or further selections can be
made either by pointing or by voice.

An overview on the parser architecture is shown in figure 4.
The input query is the result of the automatic speech recognizer
(ASR). This means that some formatting constraints can already
be assumed, for example the input always consists of lowercase
letters and does not contain special characters.

A general preprocessing can be executed on the input query.
As parsing involves finding a match between the input query
and the vocabulary entries, both sides may be processed to add
similarity between them via normalization. For example, the car
model named “330i”, might be translated by the speech recog-
nizer to “3 30 i”, “330 i” or “3 30i”, depending on the prosody
used by the speaker. In order to find a match in the vocabulary,
we state that all combinations of several numerals followed by a
non-numeral must be separated by a white space character and
add a transformation rule to the preprocessor. Alternatively we
could have added all these forms to the vocabulary, with the
disadvantage that the context depth of the parser (the number
of words to be taken as a single token) would have to be en-
larged. This would not have helped in this case, because the
model “330i” is not in the vocabulary (it is actually not a model

2http://en.wikipedia.org/wiki/Wikipedia:Wikidata

but a model variant), but “330” is. Because of the inserted white
space, this can now be matched.

After preprocessing, the input gets matched against the vo-
cabulary by the island parser. Firstly, numerical values are de-
tected. The exact algorithm is described in [3]. Numerical val-
ues in the context of car search are, for example, price, first
registration, mileage or engine power. The words that were in-
terpreted in this module are removed from the search string. Of
course we wouldn’t want a token like “300” to be interpreted
both as a number and as a model name. This leads in German
to errors for sentences like “fiat 500 bis 1000 euro” (fiat 500 up
to 1000 euro), because “500 up to 1000 euro” gets interpreted as
a price range, and the model “fiat 500” not recognized, but only
the brand “fiat”. But this is a natural ambiguity which cannot
be avoided.

The remaining string gets matched against the vocabulary
entries (entities), the algorithm is again described in [3]. Be-
neath the set of recognized entities, a rest string containing the
words that were not interpreted is delivered, and logged by the
system. This can later be used for vocabulary tuning when
searching for missing synonyms. For example we saw in the
logs that the string “meter” is not interpreted; it certainly is a
mis-recognition from the speech recognizer of the word “kilo-
meter”, so we added this as a synonym.

The output of the two preceding modules is a set of values
and entities like brand, model, or accessories. In this module
we do some checks to ensure model-brand consistency, even
adding a missing brand for a given model, which is necessary
because the search on the AutoScout24 database cannot be exe-
cuted without stating a brand. Because the AutoScout24 model
and brand database is updated frequently when new models ap-
pear on the market, the generation of the parser recognition vo-
cabularies from the database must be done automatically by a
set of extraction rules.

Figure 4: Parsing and maintenance process in the AutoScout24
app

4. Conclusions
We described three mobile apps that deal with voice search.
AskWiki can be used to do question answering on Wikipedia
content, AutoScout24 app enables the user to search for second
hand cars and the TV guide app is used to search the TV pro-
gram by voice. First promising steps were taken to use linked
open data for query expansion, i.e. search the TV program for
movies starring a specific actor.



5. References
[1] F. Burkhardt and J. Zhou, “Askwiki: Shallow semantic processing

to query wikipedia,” Proc. EUSIPCO, 2012.

[2] F. Burkhardt, J. Zhou, S. Seide, T. Scheerbarth, B. Jäkel, and
T. Buchner, “Voice enabling the autoscout24 car search app,” Proc.
of the ESSV, Elektronische Sprachsignalverarbeitung, Bielefeld,
2013.

[3] F. Burkhardt and H. U. Nägeli, “Voice search in mobile applications
and the use of linked open data,” Proceedings Interspeech Lyon,
2013.

[4] D. Buscaldi and P. Rosso, “Mining knowledge from wikipedia from
the question answering task,” Proceedings of the 5th International
Conference on Language Resources and Evaluation, 2006.

[5] M. Völkel, M. Krötzsch, D. Vrandečić, H. Haller,
and R. Studer, “Semantic wikipedia,” in Proceedings
of the 15th international conference on World Wide
Web, WWW 2006, Edinburgh, Scotland, May 23-26,
2006, MAY 2006. [Online]. Available: http://www.aifb.uni-
karlsruhe.de/WBS/hha/papers/SemanticWikipedia.pdf

[6] D. Ahn, V. Jijkoun, G. Mishne, K. Mller, M. de Rijke, and
S. Schlobach, “Using wikipedia at the trec qa track,” in Proceed-
ings of TREC 2004, 2004.

[7] D. W. Embley, D. M. Campbell, and R. D. Smith, “Ontology-based
extraction and structuring of information from data-rich unstruc-
tured documents,” Proceedings of the seventh international confer-
ence on Information and knowledge management, 1998.


